If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+y=56
We move all terms to the left:
y^2+y-(56)=0
a = 1; b = 1; c = -56;
Δ = b2-4ac
Δ = 12-4·1·(-56)
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-15}{2*1}=\frac{-16}{2} =-8 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+15}{2*1}=\frac{14}{2} =7 $
| 10x+85x-4=12x+16 | | 108x=(108(x+3))/3 | | -10(s+2)=-7 | | 0.25x+0.05*(6000-0.25x)/0.95+0.1*(3000-0.25x)/0.9=1000 | | 0.25x+0.05((6000-0.25x)/0.95)+0.1((3000-0.25x)/0.9)=1000 | | 0.25x+0.05*((6000-0.25x)/0.95)+0.1*((3000-0.25x)/0.9)=1000 | | 20x÷100=12 | | 4x-17=5x+17 | | 5(-2x-4)=-10x-20 | | 5(x-7)=5x+12 | | b+91=-156 | | y=6-7(-1) | | 108x=36x+108 | | 4+42y=21y+7 | | 35y=3 | | 15x-5=45x-13 | | (11x+14)=(24x+96) | | 2x+0.005=x | | 2a+7=5a-2 | | (x-40)=(3x) | | 2(2x+25)-6=12+3x-1 | | -13+2y=-52+17y | | 5x+6=4x-5 | | 5x+7-3x=30 | | 3x+1=-71 | | 7y/2=-3 | | 2x-40=x+60 | | 10x+21=6x+125 | | 3(x2)=7x+8 | | 1.4x+x=24 | | -5x-9=7x+11 | | 2y+9=-87-10y |